[DOI] 10.3969 / j. issn. 1671-6450.2023.01.020

综 述

深度学习在 MR 早期诊断膝关节骨性关节炎中的研究进展

张乐平综述 付旷审校

作者单位: 150001 哈尔滨医科大学附属第二医院磁共振诊断室 通信作者: 付旷, E-mail: zhangleping97@163.com

【摘 要】 膝关节是人体最大最复杂的关节,膝关节的退变和损伤是中老年常见的疾病。深度学习在医学领域 迅速发展,文章就深度学习在早期膝关节骨性关节炎 MR 诊断中的研究进展进行综述。

【关键词】 膝关节骨性关节炎;深度学习;医学影像学;磁共振成像

【中图分类号】 R684.3 【文献标识码】 A

Research progress of deep learning in early diagnosis of knee osteoarthritis with MR Zhang Leping, Fu Kuang. Department of MRI, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150001, China Corresponding author: Fu Kuang, E-mail: zhangleping97@163.com

(Abstract) The knee joint is the largest and most complex joint of the human body. Degeneration and injury of the knee joint are common diseases in the middle-aged and elderly. Deep learning is developing rapidly in the medical field. This article reviews the research progress of deep learning in the MRI diagnosis of early knee osteoarthritis.

[Key words] Knee osteoarthritis; Deep learning; Medical imaging; Magnetic resonance imaging

深度学习(deep learning, DL) 是机器学习的一个分支,可以 自动识别图像中的特征,它是由多个处理层组成的计算学习模 型,具有多个抽象级别的数据表示,在医学领域,尤其是放射学 领域,已经有大量关于 DL 的研究,显示了巨大的前景。

膝关节骨性关节炎(knee osteoarthritis, KOA) 是一种复杂 的异质性疾病,是老龄化人群中常见的致残原因。KOA 的病理 生理学特征是软骨的破坏及相邻组织和软骨下骨的相关变化, 导致关节衰弱症状,包括疼痛和残疾,并伴有结构性畸形^[1],因 此,个体水平上疾病进展的预后是复杂的。常规的影像学检查 对 KOA 的早期诊断及治疗预后预测是局限的。随着人工智能 在医学中的蓬勃发展,将会为其提供参考,DL 最近已被应用于 KOA 的评估、分类和进展预测^[23]。

1 DL 概况

DL 不是一种特定的算法, 而是一种涉及多个层次的技术^[4]。DL 方法通过组合简单但非线性的模块获得, 每个模块将一个层次的表示转换为更高、更抽象层次的表示。通过组合足够多的此类转换, 可以学习非常复杂的函数。对于分类任务, 更高层次的表示会放大对区分重要的因素, 并抑制不相关的变化, DL 的关键方面是这些功能层不是由人类工程师设计的, 它们是通用学习程序从数据中得到的^[5]。DL 模型通常基于人工神经网络, 这是节点(人工神经元)的计算框架^[6]。DL 可以使用2种基本的方法, 分别为有监督学习和无监督学习。在有监督学习中, 计算机被赋予有标记的数据集, 其中的对象已经被预先分类, 该算法寻找区分每个类别中对象的特征。在无监督学习中, 计算机算法被赋予未标记的数据, 无监督深度

学习算法的任务是确定不同类别对象的标签,并将对象划分为 相应的类别^[7]。

2 DL 在膝关节的研究进展

2.1 DL与膝关节图像分割 临床上通过图像分割对于确定 膝关节结构组织和对分割结果进行分类具有重要意义^[8]。然 而,人工分割膝关节结构是繁琐、耗时的过程,这使得在临床常 规分析更大的队列或制定个体化治疗计划变得不切实际,由 此,基于 DL 的图像分割有了发展机遇。现阶段所研究的 DL 自 动分割绝大多是在磁共振图像上完成的。Ambellan 等^[9]利用 OAI 和 SKI10 数据集结合 3D 统计形状模型(SSMs) 及 2D 和 3D 卷积神经网络(CNN),实现即使是高度病变的膝关节骨和软骨 也可以准确分割的方法,并达到了与人类观察者之间差异相当 的准确性。Chen等^[10]提出在质子密度加权 MR 中自动分割股 骨和胫骨的皮质骨和小梁骨的模型,该模型是基于 3D 局部强 度聚类的水平集自动分割和一种利用小梁表面的法向矢量确 定皮质边界的新方法,在使用不到3%时间的情况下与手动分 割结果非常一致。Byra 等^[11] 基于 U-net 构架,利用 3D UTE MR 序列开发了膝关节半月板自动分割的方法,使用2位放射科医 生提供的容积感兴趣区(ROI)开发的模型分别获得了 0.860 和 0.833 的 Dice 得分, 而放射科医生的手动分割获得了 0.820 的 Dice 得分,深度学习模型实现了与放射科医生差异性相当的分 割性能。Panfilov 等^[12]介绍了一种用于关节软骨分割和亚区域 评估的全自动方法,通过多图谱配准进行了亚区域划分,并提 取了亚区域的体积和厚度,最终通过它们对12个月和24个月 影像学骨关节炎进展的判别能力进行了回顾性分析,分割模型 与参考分割的体积测量具有很高的相关性 (r>0.934) 和一致 性(平均差异 <116 mm³),结果表明,所提出的方法已经可以 用于自动化骨关节炎研究中的软骨分割和亚区域评估。Gatti 等^[13]提出了一种仅使用 CNN 从 MR 中分割膝关节骨和软骨的 新框架,该框架分割每个膝关节需要(91±11)s。所提出的算 法展示了在没有人工干预的情况下如何从有和没有 KOA 个体 的矢状位 MR 序列中自动分割软骨的能力。Perry 等^[14]应用一 种新的半自动评估方法,使用三维主动外观建模量化滑膜组织 体积(STV),与手动分割相比,半自动方法明显快于手动分割 (18 min vs.71 min),观察者内一致性非常好,该方法比手动分 割准确、可靠。

2.2 DL 与 KOA 的评估与与预测 KOA 的诊断目前依据临床 表现和影像学图像^[15],这个过程有一定的主观性。随着 DL 逐 渐被用于 KOA 的疾病诊断和预后研究中,可以更加准确地早 期诊断和分类 KOA 帮助临床医生精确地制定诊疗计划,而了 解预后也可让医生和患者对于疾病的治疗有心理预期。Chang 等^[16] 使用 MR 图像构建了 CNN 以区分疼痛的膝关节和非疼痛 的膝关节,将模型性能提高到了0.853,并通过对参加研究个体 的双膝进行 MR 扫描来识别与膝关节疼痛最相关的结构性病 变,该 CNN 同时可以识别与单膝引起的强烈疼痛特征相关的图 像特征,确定 KOA 引起疼痛的来源和位置,可以极大地利于设 计有针对性的个体化治疗方案,以减轻症状和限制残疾。Joseph 等^[17] 基于 MR 的软骨生化成分、膝关节结构、人口统计学 和临床预测因子,开发了8年内发生 KOA 的影像学预测模型, 该研究机器学习模型可以预测在基线检查时无放射学 KOA 的 受试者在8年内发生放射学 KOA 的未来发展。已有研究使用 MR 图像建立 DL 模型识别 KOA 形态学表型用于指导预防疾病 进展,针对性制定干预措施^[1849]。在 KOA 后期,一种治疗手段 是侵入性选择全膝关节置换术(TKR),该手术存在一定并发症 风险, Tolpadi 等^[20] 将临床和人口统计信息与 MR 图像相结合, 基于 3D DESS MR 图像设计一个 CNN 模型来预测是否需要侵 入性干预,模型的准确度为(78.5±0.134)%,敏感度为(81.8± 0.643) %,特异度为(78.4±0.138) %。该模型以高敏感度和 特异度识别有 TKR 风险的患者,对于没有或中度 KOA 患者,可 以延长膝关节健康并延迟 TKR 的非侵入性治疗时间。此模型 是第一个应用 3D CNN 从 MR 预测 TKR 的模型。Abbas 等^[21] 将机器学习模型(MLMS) 拟合到 SCIKIT-Learn 和 PyTorch 中的 训练集,并在验证集上调整参数,模型被训练以使均方误差 (MSE) 最小,来预测全膝关节置换(TKA) 的手术持续时间 (DOS) 和术后住院时间(LOS)。该研究表明,传统和 DL 模型 在预测 TKA 患者的 DOS 和 LOS 方面表现优于平均回归模型。

2.3 DL 与膝关节软骨 KOA 会出现膝关节软骨的厚度变化 和缺损,因此,发现软骨的变化对 KOA 的早发现、早诊断、早治 疗是十分有必要的。MR 是 KOA 研究中无创评估关节软骨厚 度、完整性和质量的最佳方式^[22]。Vaarala 等^[23]用 3D DESS 序 列基于灰度共生矩阵的 3D 纹理分析开发了一种预测 KOA 软 骨发病和进展的纹理方法,该方法对放射学 KOA 前后的软骨 变化都很敏感,它能够检测对照组、缓慢进展组和快速进展组 的纵向变化,并可以区分由于 KOA 和衰老引起的软骨改变。 Thomas 等^[24]设计了一款全自动股骨软骨分割模型,用于测量 T2 松弛值和纵向变化,结果表明对软骨健康的评估使用研究中 的模型与专家评估一致性较好。Schiratti 等^[25]使用 DL 来建立 KOA 未来进展的预测模型来评估 MR 图像是否可以预测未来 12 个月软骨进一步退化。研究显示利用 COR TSE 图像,所提 出的分类模型 AUC 为 65%,以 SAG 3D DESS 图像作为输入,该 模型的 AUC 为 63%,高级放射科医生获得的 AUC 为 59.72%, 这是监督学习方法首次应用于 MR 预测膝关节骨关节炎软骨的 进展。这项可行性研究表明, DL 有可能支持放射科医生完成 识别疾病进展高风险患者的艰巨任务。

2.4 DL 与膝关节半月板 半月板在膝关节运动过程中减震、 分散重力和减少摩擦方面发挥着关键作用。Bien 等^[26] 开发了 一种利用 CNN(主要构建块 MRNet) 来检测膝关节中的一般异 常和特定诊断的 DL 模型,研究纳入了 1 370 个数据集。在检测 膝关节异常和半月板撕裂时,该模型 AUC 值分别为 0.937 和 0.847,该 DL 模型实现了利用 MR 图像从内部和外部数据集快 速生成准确的膝关节临床病理学分类。Tack 等^[27] 基于 CNN, 提出了一种新颖且计算效率高的方法用于检测 MR 数据中半月 板撕裂,研究首先在 3D MR 序列 DESS 中运行,而后推广到 IW TSE 扫描序列,研究所提出的方法在检测 DESS 和 IW TSE MR 数据中的半月板撕裂方面实现了高精度。Hung 等^[28] 训练和评 估一个用于自动检测 MR 半月板撕裂的深度学习模型,在内部 测试、内部验证和外部验证数据集上,该模型检测半月板撕裂 的总准确率分别为 95.4%、95.8% 和 78.8%,具有较高的敏感 度、特异度和准确度。

2.5 DL 与膝关节软骨下骨 软骨下骨在骨关节炎的发病机 制中发挥作用,软骨下骨也被认为是潜在的疾病修饰骨关节炎 药物的靶点^[29-31]。Chang等^[32]利用 CNN 和 U-Net 提出了可以 提取软骨下骨长度(SBL)的预测模型,研究表明 SBL 平均值越 高膝关节疼痛和残疾风险越高,并增加后期 TKR 的风险。Hirvasniemi 等^[33]对 665 例膝关节数据集的胫骨软骨下骨进行半 自动提取放射学特征,研究使用了包括年龄和 BMI 的协变量模 型、图像特征模型,以及协变量加图像特征的组合模型,使用 Elastic Net 回归降维和分类并进行 10 倍交叉验证区分有无 KOA。有无 KOA 的胫骨软骨下骨的放射特征是不同的,可以此 来区分 KOA。

2.6 DL 与膝关节韧带 膝关节由韧带结构固定,维持关节的 稳定性。韧带撕裂可导致膝关节疼痛、肿胀、不稳定、骨质疏松 和骨关节炎。Awan 等^[34]用917个膝关节数据训练了标准五层 CNN 和定制 CNN 模型对健康、半撕裂、全撕裂的前交叉韧带进 行分类,结果表明,定制 CNN 模型实现了 98% 以上的准确度、 精度、特异度和敏感度,可以实现对前交叉韧带损伤较为准确 的分类。Li 等^[35]提出了基于 DL 的 MR 多模态特征融合模型, 用于对前交叉韧带损伤的诊断,结果表明矢状位检测在前交叉 韧带(ACL)撕裂预测中具有很大的优势,准确率高达 96.28%。 基于 DL 的 MR 显著提高了诊断 ACL 损伤的能力,并提高了诊 断韧带损伤的敏感度、特异度和准确度。Zhang 等^[36]基于 3D DenseNet 的架构构建的一个分类 CNN 同样证明使用基于 DL 的自动检测系统来评估 ACL 损伤的可行性。Minamoto 等^[37]基于 CNN 训练了能够评估前交叉韧带损伤的深度学习模型,其敏感度、特异度、准确度、阳性预测值和阴性预测值分别为91.0%、86.0%、88.5%、87.0%和91.0%,结果表明准确度可与人工相当。

3 小结与展望

DL 在近几年迅速发展,已经应用于 KOA 分割、诊断、预测 等各个方面,但仍存在一些不足。首先是 DL 算法固有的黑盒 性质和其算法的复杂性。为了满足对膝关节损伤的可信赖检 测系统的需求,医学诊断算法应满足许多要求,例如透明度、可 解释性、易用性,以便获得临床医生的信任。AI 可解释性和轻 量级 DL 是此类系统在日常临床实践中广泛使用的关键推动因 素。轻量级 DL 领域的目标是开发具有更浅层架构的模型,而 且速度更快、数据效率更高,同时保持高性能标准。其次,现在 已有 DL 模型研究大部分是评估单独结构或组织的病变,如软 骨、半月板及韧带等,但如果大规模应用于临床,多个模型的应 用就会增加诊断的复杂性,日后的研究应注重更多关注整体的 诊断模型,来解决此类问题。

总之, DL 在 KOA 的评估、诊断与预测中显示了其巨大的优势, 人工智能分析有望彻底改变膝关节医学信息学, 实现精准 医学和准确诊断。

参考文献

- Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice [J]. The Lancet, 2011, 377 (9783):2115-2126. DOI: 10.1016/s0140-6736(11) 60243-2.
- Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diagnosis from plain radiographs: A Deep Learning-Based Approach [J]. Sci Rep, 2018, 8(1): 1727. DOI: 10.1038/s41598-018-20132-7.
- [3] Tiulpin A, Klein S, Bierma-Zeinstra SMA, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data [J]. Sci Rep, 2019, 9 (1): 20038. DOI: 10.1038/s41598-019-56527-3.
- [4] Moeskops P, Viergever MA, Mendrik AM, et al. Automatic segmentation of MR brain images with a convolutional neural network [J].
 IEEE Trans Med Imaging, 2016, 35(5): 1252-1261. DOI: 10.1109/ TMI. 2016. 2548501.
- [5] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521 (7553): 436-444. DOI: 10.1038/nature14539.
- [6] Czum JM. Dive into deep learning [J]. J Am Coll Radiol, 2020, 17
 (5):637-638. DOI: 10.1016/j. jacr. 2020.02.005.
- [7] McBee MP, Awan OA, Colucci AT, et al. Deep learning in radiology [J].
 Acad Radiol, 2018, 25 (11): 1472-1480. DOI: 10. 1016/j. acra.
 2018. 02.018.
- [8] Afza F, Khan MA, Sharif M, et al. Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection [J]. Microsc Res Tech, 2019, 82 (9):1471-1488. DOI: 10.1002/jemt. 23301.
- [9] Ambellan F, Tack A, Ehlke M, et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convo-

lutional neural networks: Data from the Osteoarthritis Initiative [J]. Med Image Anal,2019,52: 109-118. DOI: 10. 1016/j. media. 2018. 11.009.

- [10] Chen H, Sprengers AMJ, Kang Y, et al. Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee [J]. Med Biol Eng Comput, 2019, 57 (5): 1015-4027. DOI: 10.1007/s11517-018-4936-7.
- [11] Byra M, Wu M, Zhang X, et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning [J]. Magn Reson Med, 2020, 83(3): 1109-1122. DOI: 10.1002/mrm. 27969.
- [12] Panfilov E, Tiulpin A, Nieminen MT, et al. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative [J]. J Orthop Res, 2022, 40(5): 1113–1124. DOI: 10.1002/jor. 25150.
- [13] Gatti AA, Maly MR. Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative [J]. MAGMA, 2021, 34(6): 859-875. DOI: 10. 1007/s10334-021-00934-z.
- [14] Perry TA, Gait A, O Neill TW, et al. Measurement of synovial tissue volume in knee osteoarthritis using a semiautomated MRI-based quantitative approach [J]. Magn Reson Med, 2019,81(5): 3056-3064. DOI: 10.1002/mrm. 27633.
- [15] 王波,余楠生. 膝骨关节炎阶梯治疗专家共识(2018 年版 [J]. 中华关节外科杂志: 电子版, 2019, 13(1): 124-130. DOI: 10. 3877/cma. j. issn. 1674-134X. 2019.01.024.
- [16] Chang GH, Felson DT, Qiu S, et al. Assessment of knee pain from MR imaging using a convolutional Siamese network [J]. Eur Radiol, 2020,30(6):3538-3548. DOI: 10.1007/s00330-020-06658-3.
- [17] Joseph GB, McCulloch CE, Nevitt MC, et al. Machine learning to predict incident radiographic knee osteoarthritis over 8 Years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative [J]. Osteoarthritis Cartilage, 2022, 30(2): 270-279. DOI: 10.1016/j. joca. 2021. 11.007.
- [18] Namiri NK, Lee J, Astuto B, et al. Deep learning for large scale MRIbased morphological phenotyping of osteoarthritis [J]. Sci Rep, 2021, 11(1):10915. DOI: 10.1038/s41598-021-90292-6.
- [19] Nelson AE, Fang F, Arbeeva L, et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium [J]. Osteoarthritis Cartilage, 2019, 27(7): 994-1001. DOI: 10.1016/j. joca. 2018. 12. 027.
- [20] Tolpadi AA, Lee JJ, Pedoia V, et al. Deep learning predicts total knee replacement from magnetic resonance images [J]. Sci Rep, 2020, 10 (1):6371. DOI: 10.1038/s41598-020-63395-9.
- [21] Abbas A, Mosseri J, Lex JR, et al. Machine learning using preoperative patient factors can predict duration of surgery and length of stay for total knee arthroplasty [J]. International Journal of Medical Informatics, 2022, 158: 104670. DOI: 10. 1016/j. ijmedinf. 2021.104670.
- [22] Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MRsequences [J]. Eur J Radiol, 2011, 78(3): 398-405. DOI: 10.1016/

j. ejrad. 2010. 01. 008.

- [23] Vaarala A, Casula V, Peuna A, et al. Predicting osteoarthritis onset and progression with 3D texture analysis of cartilage MRI DESS: 6– Year data from osteoarthritis initiative [J]. J Orthop Res, 2022, 40: 2597-2608. DOI: 10. 1002 / jor. 25293.
- [24] Thomas KA, Krzeminski D, Kidzinski L, et al. Open source software for automatic subregional assessment of knee cartilage degradation using quantitative T2 relaxometry and deep learning [J]. Cartilage, 2021, 13 (1_suppl): S747-756. DOI: 10. 1177/19476035211042406.
- [25] Schiratti JB, Dubois R, Herent P, et al. A deep learning method for predicting knee osteoarthritis radiographic progression from MRI [J]. Arthritis Res Ther, 2021, 23 (1): 262. DOI: 10.1186/s13075-021-02634-4.
- [26] Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J]. PLoS Med, 2018, 15(11) : e1002699. DOI: 10.1371/journal. pmed. 1002699.
- [27] Tack A, Shestakov A, Ludke D, et al. A multi-task deep learning method for detection of meniscal tears in MRI data from the osteoarthritis initiative database [J]. Front Bioeng Biotechnol, 2021, 9: 747217. DOI: 10.3389/fbioe.2021.747217.
- [28] Hung TNK, Vy VPT, Tri NM, et al. Automatic detection of meniscus tears using backbone convolutional neural networks on knee MRI [J]. J Magn Reson Imaging, 2022. DOI: 10.1002/jmri. 28284.
- [29] Mansell JP, Collins C, Bailey AJ. Bone, not cartilage, should be the major focus in osteoarthritis [J]. Nat Clin Pract Rheumatol, 2007, 3
 (6): 306–307. DOI: 10.1038/ncprheum0505.
- [30] Weinans H, Siebelt M, Agricola R, et al. Pathophysiology of peri-articular bone changes in osteoarthritis [J]. Bone, 2012, 51(2): 190-196.
 DOI: 10.1016/j. bone. 2012.02.002.

- [39] Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data [J]. Expert Opinion on Pharmacotherapy, 2020, 21 (1/5): 307-315. DOI: 10. 1080/14656566. 2019.1704732.
- [40] Weber JJ, Clemensson LE, Schiöth HB, et al. Olesoxime in neurode– generative diseases: Scrutinising a promising drug candidate [J]. Bi– ochemical Pharmacology, 2019, 168: 305-318. DOI: 10. 1016/j. bcp. 2019. 07. 002.
- [41] Piepers S, Cobben JM, Sodaar P, et al. Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid [J]. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82 (8): 850-852. DOI: 10. 1136/jnnp.

- [31] Kwan Tat S, Lajeunesse D, Pelletier JP, et al. Targeting subchondral bone for treating osteoarthritis: what is the evidence [J]. Best Pract Res Clin Rheumatol, 2010, 24 (1): 51-70. DOI: 10. 1016/j. berh. 2009.08.004.
- [32] Chang GH, Park LK, Le NA, et al. Subchondral bone length in knee osteoarthritis: A deep learning-derived imaging measure and its association with radiographic and clinical outcomes [J]. Arthritis Rheumatol, 2021, 73(12): 2240-2248. DOI: 10.1002/art.41808.
- [33] Hirvasniemi J, Klein S, Bierma-Zeinstra S, et al. A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone [J]. Eur Radiol, 2021,31(11):8513-8521. DOI: 10.1007/s00330-021-07951-5.
- [34] Awan MJ, Rahim MSM, Salim N, et al. Improved deep convolutional neural network to classify osteoarthritis from anterior cruciate ligament tear using magnetic resonance imaging [J]. J Pers Med, 2021, 11 (11) :1163. DOI: 10.3390/jpm11111163.
- [35] Li Z, Ren S, Zhou R, et al. Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury [J]. J Healthc Eng, 2021, 2021: 4076175. DOI: 10. 1155/ 2021/4076175.
- [36] Zhang L, Li M, Zhou Y, et al. Deep learning approach for anterior cruciate ligament lesion detection: Evaluation of diagnostic performance using arthroscopy as the reference standard [J]. J Magn Reson Imaging, 2020, 52(6): 1745-1752. DOI: 10.1002/jmri. 27266.
- [37] Minamoto Y, Akagi R, Maki S, et al. Automated detection of anterior cruciate ligament tears using a deep convolutional neural network [J]. BMC Musculoskelet Disord, 2022, 23 (1): 577. DOI: 10. 1186/s12891-022-05524-1.

(收稿日期:2022-08-23)

2009.200253.

- [42] Biondi O, Branchu J, Ben Salah A, et al. IGF-IR reduction triggers neuroprotective signaling pathways in spinal muscular atrophy mice [J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2015, 35 (34) : 12063-12079. DOI: 10. 1523 / JNEUROS-CI. 0608-15. 2015.
- [43] Biondi O, Branchu J, Ben Salah A, et al. Reldesemtiv in patients with spinal muscular atrophy: a Phase 2 Hypothesis-Generating Study [J]. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 2021, 18(2): 1127-1136. DOI: 10.1007/ s13311-020-01004-3.

(收稿日期:2022-08-12)

⁽上接101页)