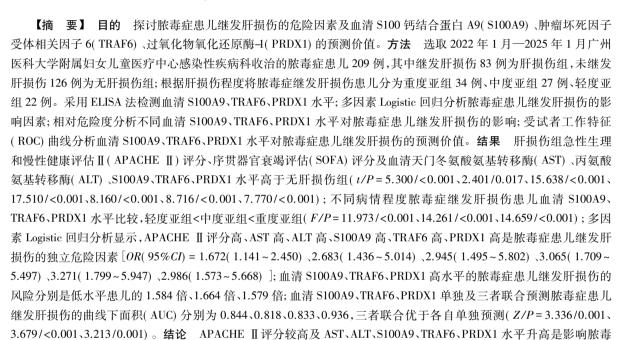
【DOI】 10.3969 / j.issn.1671-6450.2025.11.014

论著•临床


脓毒症患儿继发肝损伤的危险因素及血清 S100A9、TRAF6、PRDX1 的预测价值

杨峰霞,廖凯丽,吴思菲,房春晓

基金项目: 国家自然科学基金资助项目(82372228)

作者单位: 511300 广州,广州医科大学附属妇女儿童医疗中心感染性疾病科

通信作者: 房春晓,E-mail: chunxiaocq@ 163.com

【关键词】 脓毒症; 肝损伤; S100 钙结合蛋白 A9; 肿瘤坏死因子受体相关因子 6; 过氧化物氧化还原酶-1; 危险因素; 儿童

症患儿继发肝损伤的危险因素,联合检测血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的预测价值

【中图分类号】 R631; R725 【文献标识码】 A

The risk factors for secondary liver injury in children with sepsis and the predictive value of serum \$100A9, TRAF6, and PRDX1 Yang Fengxia, Liao Kaili, Wu Sifei, Fang Chunxiao. Department of Infectious Diseases, Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangdong, Guangzhou 511300, China Funding program: National Natural Science Foundation of China (82372228)

Corresponding author: Fang Chunxiao, E-mail: chunxiaocq@ 163.com

[Abstract] Objective To explore the risk factors for secondary liver injury in children with sepsis and the predictive value of serum S100 calcium-binding protein A9 (S100A9), tumor necrosis factor receptor-associated factor 6 (TRAF6), and peroxiredoxin-I (PRDX1). **Methods** Eighty-three children with sepsis secondary to liver injury admitted to the Department of Infectious Diseases of the Affiliated Women's and Children's Medical Center of Guangzhou Medical University from January 2022 to January 2025 were selected as the liver injury group, and 126 children without secondary liver injury were selected as the non-liver injury group. The liver injury group was further classified into 34 cases of severe, 27 cases of moderate, and 22 cases of mild according to the degree of liver injury. Serum levels of S100A9, TRAF6, and PRDX1 were detected using the

更高。

ELISA method. Multifactorial logistic regression analysis was used to identify risk factors affecting secondary liver injury. Relative risk analysis was performed to assess the impact of different serum levels of S100A9, TRAF6, and PRDX1 on secondary liver injury. The predictive value of serum S100A9, TRAF6, and PRDX1 for secondary liver injury was evaluated using ROC curve analysis. **Results** The liver injury group had higher APACHE II scores, SOFA scores, AST, ALT, S100A9, TRAF6, and PRDX1 levels than the non-liver injury group (t = 5.300, 2.401, 15.638, 17.510, 8.160, 8.716, 7.770, P < 0.001). Serum levels of S100A9, TRAF6, and PRDX1 in children with different degrees of liver injury increased with the severity of injury (t = 11.973, 14.261, 14.659, P < 0.001). Higher APACHE II scores and elevated levels of AST, ALT, S100A9, TRAF6, and PRDX1 were identified as risk factors for secondary liver injury in children with sepsis [OR(95%CI) = 1.672(1.141 - 2.450), 2.683(1.436 - 5.014), 2.945(1.495 - 5.802), 3.065(1.709 - 5.497), 3.271(1.799 - 5.947), 2.986(1.573 - 5.668)]. The AUCs of serum S100A9, TRAF6, PRDX1, and the combination of the three for predicting secondary liver injury in children with sepsis were 0.844, 0.818, 0.833, and 0.936, respectively. The combination of the three markers was superior to the AUCs predicted by each of serum S100A9, TRAF6, and PRDX1 individually (E = 3.336, 3.679, 3.213, P = 0.001, < 0.001, 0.001). Conclusion Higher APACHE II scores and elevated levels of AST, ALT, S100A9, TRAF6, and PRDX1 are risk factors for secondary liver injury in children with sepsis. The combined detection of serum S100A9, TRAF6, and PRDX1 has a high predictive value for secondary liver injury in children with sepsis.

(Key words) Sepsis; Liver injury; S100 calcium-binding protein A9; Tumor necrosis factor receptor-associated factor 6; Peroxiredoxin-1:Risk factors; Children

脓毒症是由病原微生物感染引发的全身炎性反应 综合征,是儿科重症中最常见且挑战性较大的危重疾 病之一[1-2]。常伴有器官功能障碍,肝脏作为免疫和 代谢核心器官,是最易受累的靶器官之一[3-4]。约 30%的脓毒症患儿会继发肝损伤,病死率显著增加,早 期识别高危因素对改善预后具有重要意义[5]。近年 来,炎性反应和氧化应激相关分子逐渐成为关注焦点。 S100 钙结合蛋白 A9(S100 calcium binding protein A9, S100A9) 参与调控免疫炎性反应,研究发现其在脓毒 症患者中明显升高,可能与病情严重程度相关[6]。肿 瘤坏死因子受体相关因子 6(tumor necrosis factor receptor associated factor 6, TRAF6) 是炎性反应信号通路 中的关键介质,参与 NF-kB 活化过程,在脓毒症相关 的免疫失衡中发挥核心作用[7]。过氧化物氧化还原 酶-1(peroxiredoxin-1, PRDX1)作为一种促炎因子,能 调控细胞内氧化应激反应,研究发现其水平升高可能 在肝损伤病理过程中发挥免疫和炎性反应调节作用, 具有潜在临床价值^[8]。本研究旨在分析血清 S100A9、 TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的预测 价值,以期为高危患儿的早期识别与个体化干预提供 参考,报道如下。

1 资料与方法

1.1 临床资料 选取 2022 年 1 月—2025 年 1 月广州 医科大学附属妇女儿童医疗中心感染性疾病科收治的 脓毒症患儿 209 例,其中继发肝损伤 83 例为肝损伤组,未继发肝损伤 126 例为无肝损伤组。根据肝损伤程度^[9],将脓毒症继发肝损伤患儿分为重度亚组 34

例、中度亚组 27 例、轻度亚组 22 例。肝损伤组急性生理和慢性健康评估 II (APACHE II) 评分、序贯器官衰竭评估(SOFA) 评分及血清天门冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)水平高于无肝损伤组(P<0.05或0.01),2组性别、年龄、感染部位、发病至就诊时间、家族肝病史、遗传代谢病家族史、白细胞计数(WBC)、总胆红素(TBil)、高敏 C 反应蛋白(hs-CRP) 比较,差异无统计学意义(P>0.05),见表 1。本研究已获得医院伦理委员会批准(批字〔2021〕第250A01号),患儿家属知情同意并签署知情同意书。

1.2 病例选择标准 (1) 纳入标准: ①脓毒症患儿均符合指南中的相关诊断标准 [10],并经过临床检查确诊; ②肝损伤患儿均符合指南中的相关诊断标准 [11], 经超声检查提示肝组织炎性病变; ③年龄 1~14 岁。(2) 排除标准: ①患儿有恶性肿瘤、免疫缺陷; ②心、肝、肾功能不全; ③中毒或药物性肝损伤; ④合并先天性心脏病等其他严重器官原发性疾病。

1.3 观测指标与方法

1.3.1 疾病严重程度评估: APACHE Ⅱ 评分综合评估 患者的急性生理状态、年龄和慢性健康状况,分值范围 0~71分,得分越高提示病情越严重; SOFA 评分从呼吸、神经、心血管、肝功能、凝血、肾功能等 6 个方面评估器官功能障碍程度,每项评分 0~4 分,总分越高代表多器官功能不全越明显。

1.3.2 血清 S100A9、TRAF6、PRDX1 水平检测: 于患 儿人院次日清晨采集空腹静脉血 3~5 ml,室温放置后 离心收集上层血清,采用 ELISA 法检测血清 S100A9、

表 1 无肝损伤组与肝损伤组脓毒症患儿临床资料比较 **Tab.1** Comparison of clinical data of children in the non-liver injury group and the liver injury group

项 目	无肝损伤组 (n=126)	肝损伤组 (n=83)	<i>t/</i> χ² 值	P值
性别[例(%)]			0.696	0.404
男	67(53.17)	49(59.04)		
女	59(46.83)	34(40.96)		
年龄(x±s,岁)	8.75 ± 2.31	9.16 ± 2.54	1.207	0.229
感染部位[例(%)]			0.969	0.616
呼吸道	38(30.16)	21(25.30)		
腹腔	75(59.52)	55(66.27)		
其他	13(10.32)	7(8.43)		
APACHE II评分(x±s,分)	17.56±5.45	21.83 ± 6.06	5.300	< 0.001
SOFA 评分(x±s,分)	6.75 ± 2.17	7.53 ± 2.48	2.401	0.017
发病至就诊($\bar{x}\pm s,d$)	3.72 ± 0.69	3.91 ± 0.85	1.774	0.077
家族肝病史[例(%)]	5(3.97)	9(10.84)	3.784	0.052
遗传代谢病家族史[例 %]	4(3.17)	6(7.23)	1.025	0.311
实验室检查(x±s)				
WBC($\times 10^9$ /L)	8.96 ± 2.37	9.53 ± 2.43	1.684	0.094
ALT(U/L)	67.35 ± 16.14	132.18±36.53	17.510	< 0.001
AST(U/L)	75.63 ± 18.42	139.46±39.84	15.638	< 0.001
$TBil(\ \mu mol/L)$	32.97±8.52	35.18 ± 8.76	1.814	0.071
hs-CRP(mg/L)	79.62±16.64	84.39±19.42	1.896	0.059

TRAF6、PRDX1 水平(试剂盒均购自武汉华美生物公司, 货号: CSB-E11834H、CSB-E14078H、CSB-EL018653HU)。

1.4 统计学方法 采用 SPSS 25.0 软件处理数据。计数资料以频数或构成比(%)表示,组间比较采用 χ^2 检验;符合正态分布的计量资料以 $\bar{x}\pm s$ 表示,2 组间比较采用独立样本 t 检验,多组间比较采用 F 检验;多因素 Logistic 回归分析脓毒症患儿继发肝损伤的影响因素;相对危险度分析不同血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的影响;受试者工作特征 (ROC) 曲线分析血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的影响;受试者工作特征 (ROC) 曲线分析血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的预测价值。P<0.05 为差异有统计学意义。

2 结 果

- 2.1 2组血清 S100A9、TRAF6、PRDX1 水平比较 肝 损伤组血清 S100A9、TRAF6、PRDX1 水平高于无肝损 伤组,差异有统计学意义(*P*<0.01),见表 2。
- 2.2 不同病情程度脓毒症继发肝损伤患儿血清 S100A9、TRAF6、PRDX1 水平比较 不同病情程度脓毒症继发肝损伤患儿血清 S100A9、TRAF6、PRDX1 水平比较,轻度亚组<中度亚组<重度亚组(*P*<0.01),见表 3。
- 2.3 多因素 Logistic 回归分析脓毒症患儿继发肝损伤 的影响因素 以脓毒症患儿继发肝损伤为因变量(赋

值:是为"1";否为"0"),以上述结果中P<0.05项目(连续变量,原值代入)为自变量,进行多因素 Logistic 回归分析,结果显示: APACHE II 评分高、AST 高、ALT 高、S100A9高、TRAF6高、PRDX1高是脓毒症患儿继发肝损伤的独立危险因素(P<0.01),见表 4。

表 2 无肝损伤组与肝损伤组脓毒症患儿血清 S100A9、 TRAF6、PRDX1 水平比较 (x±s)

Tab.2 Comparison of serum S100A9, TRAF6 and PRDX1 levels in children of the non-liver injury group and the liver injury group

组	组 别 例数		S100A9 (μg/L)	TRAF6 (ng/L)	PRDX1 (μg/L)	
无肝损伤组		126	173.49±32.18	1 348.59±284.57	118.23±24.76	
肝损伤组		83	216.27±43.51	1 762.31±401.46	152.64±39.28	
t 值			8.160	8.716	7.770	
<i>P</i> 值			< 0.001	< 0.001	< 0.001	

表 3 不同病情程度脓毒症继发肝损伤患儿血清 S100A9、TRAF6、PRDX1 水平比较 (x±s)

Tab. 3 Comparison of serum levels of S100A9, TRAF6 and PRDX1 in children with mild, moderate and severe liver injury

组别	例数	S100A9 (μg/L)	TRAF6 (ng/L)	PRDX1 (μg/L)
轻度亚组	22	182.51±35.67	1 482.23±301.52	128.68±21.13
中度亚组	27	214.93±41.35	1 692.79±342.18	151.89 ± 26.41
重度亚组	34	239.18±46.83	1 998.75±411.36	168.74±30.67
F 值		11.973	14.261	14.659
P 值		< 0.001	< 0.001	< 0.001

表 4 多因素 Logistic 回归分析脓毒症患儿继发肝损伤的影响 因素

Tab.4 Logistic regression was used to analyze the risk factors influencing secondary liver injury in children with sepsis

指标	β值	SE 值	Wald 值	P 值	OR 值	95% <i>CI</i>
APACHE II评分高	0.514	0.195	6.949	0.008	1.672	1.141~2.450
SOFA 评分高	0.347	0.182	3.638	0.056	1.415	$0.990 \sim 2.022$
AST 高	0.987	0.319	9.572	0.002	2.683	1.436~5.014
ALT 高	1.080	0.346	9.745	0.002	2.945	$1.495 \sim 5.802$
S100A9 高	1.120	0.298	14.127	< 0.001	3.065	1.709~5.497
TRAF6 高	1.185	0.305	15.098	< 0.001	3.271	1.799~5.947
PRDX1 高	1.094	0.327	11.191	0.001	2.986	1.573~5.668

2.4 血清 S100A9、TRAF6、PRDX1 水平对脓毒症患 儿继发肝损伤的相对危险度分析 以血清 S100A9、TRAF6、PRDX1 水平的平均值(194.88 μg/L、1555.45 ng/L、134.44 μg/L) 为界,将脓毒症继发肝损 伤患儿血清 S100A9、TRAF6、PRDX1 水平分为高、低

水平,相对危险度分析显示,血清 S100A9、TRAF6、PRDX1 高水平的脓毒症患儿继发肝损伤的风险分别 是低水平患儿的 1.584 倍、1.664 倍、1.579 倍,见表 5。

表 5 血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝 损伤的相对危险度分析

Tab.5 Analysis of the relative risk of secondary liver injury in children with sepsis by serum levels of S100A9, TRAF6 and PRDX1

指	i	标	肝损伤组 (n=83)	无肝损伤组 (n=126)	相对 危险度	95%CI	χ ² 值	P 值
SI	100)A9					7.219	0.007
	启	5水平	48(57.83)	49(38.89)	1.584	1.127~2.226		
	但	张水平	35(42.17)	77(61.11)				
TI	RA	F6					8.823	0.003
	启	5水平	49(59.04)	48(38.10)	1.664	1.181~2.344		
	但	张水平	34(40.96)	78(61.90)				
P	RΙ	OX1					6.916	0.009
	启	5水平	51(61.45)	54(42.86)	1.579	1.113~2.238		
	但	张水平	32(38.55)	72(57.14)				

2.5 血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的预测价值 绘制血清 S100A9、TRAF6、PRDX1 水平预测脓毒症患儿继发肝损伤的 ROC 曲线,并计算曲线下面积(AUC),结果显示:血清 S100A9、TRAF6、PRDX1 单独及三者联合预测脓毒症患儿继发肝损伤的 AUC 分别为 0.844、0.818、0.833、0.936,三者联合优于血清 S100A9、TRAF6、PRDX1 各自单独预测的效能(Z/P=3.336/0.001、3.679/<0.001、3.213/0.001),见表 6、图 1。

表 6 血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝 损伤的预测价值

Tab. 6 The predictive value of serum S100A9, TRAF6 and PRDX1 for secondary liver injury in children with sepsis

变量	截断值	AUC	95% <i>CI</i>	敏感度	特异度	Youden 指数
S100A9	184.99 μg/L	0.844	0.788~0.890	0.880	0.667	0.547
TRAF6	$1~502.60~\mathrm{ng/L}$	0.818	$0.759 \sim 0.868$	0.892	0.643	0.535
PRDX1	$136.20~\mu \mathrm{g/L}$	0.833	0.775~0.881	0.711	0.818	0.529
三者联合		0.936	0.894~0.965	0.855	0.937	0.792

3 讨论

脓毒症患儿继发肝损伤是临床常见严重并发症,主要机制包括缺血缺氧、胆汁淤积及炎性反应介导的肝细胞损伤^[1]。炎性反应导致微循环障碍和中性粒细胞浸润,诱发肝细胞凋亡或坏死,胆汁排泄紊乱亦可加重肝损伤^[12]。临床上,血清转氨酶升高等常用于评

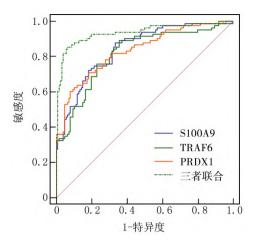


图 1 血清 S100A9、TRAF6、PRDX1 水平预测脓毒症患儿继发 肝损伤的 ROC 曲线

Fig.1 ROC curve of serum S100A9, TRAF6 and PRDX1 for predicting secondary liver injury in children with sepsis

估肝功能,但多在损伤发生后才明显,缺乏早期预警价值^[13]。肝穿刺为诊断肝损伤的金标准,但因其创伤性限制了在儿童中的应用^[2]。因此,迫切需要探索非侵入性的生物指标用于肝损伤的早期识别和风险评估。

S100A9 主要由中性粒细胞和单核细胞分泌,在炎 性反应中通过激活 TLR4 通路和增强 NF-κB 信号传 导,促进多种炎性因子的释放[14]。王敬等[15]研究发 现,败血症患儿血清 S100A9 水平升高,其水平对败血 症患儿早期诊断及病情判断具有较高的临床价值。彭 海琳等[16]研究发现,重症肺炎支原体肺炎患儿血清 S100A9 水平升高,与重症肺炎支原体肺炎病情严重程 度有关,S100A9 水平对评估重症肺炎支原体肺炎预后 不良具有较高的预测价值。本研究中,肝损伤组脓毒 症患儿血清 S100A9 水平高于无肝损伤组,其水平升 高是影响肝损伤发生的危险因素,S100A9 可能不仅反 映炎性反应程度,还可能介导炎性细胞因子释放和肝 细胞损害的过程,考虑到儿童在免疫调控能力上存在 发育不成熟的特点,S100A9的异常升高可能对肝组织 形成更持久或过度的炎性反应刺激,提示其在小儿脓 毒症肝损伤中具有更高敏感度与临床价值。

TRAF6 参与 Toll 样受体和白介素信号的下游传导,可介导 NF-KB 通路的激活,从而增加促炎细胞因子的转录,导致炎性反应和组织损伤^[17-48]。有研究发现,脓毒症并发肺损伤患者血清 TRAF6 mRNA 表达升高,血清 TRAF6 mRNA 可作为预测脓毒症并发肺损伤的生物标志物^[19]。杨威等^[20] 研究发现,外周血TRAF6 表达与重症急性胰腺炎患者并发肝损伤有关,且外周血 TRAF6 对重症急性胰腺炎患者发生肝损伤

的预测效能较高。本研究中,肝损伤组脓毒症患儿血清 TRAF6 水平高于无肝损伤组,其水平升高是影响肝损伤发生的危险因素,原因可能是 TRAF6 在调控 Kupffer 细胞活化及肝内炎性反应放大中发挥重要作用,儿童在应对高负荷炎性反应时更易诱发免疫失衡,TRAF6 的持续激活可能导致肝组织内促炎环境长期存在,诱导肝细胞凋亡或坏死。对比既往研究,本研究提示 TRAF6 可能是儿童肝脏特异性炎性反应损伤中的关键信号节点之一。

PRDX1 作为过氧化氢还原酶,参与维持细胞内氧化还原稳态,在感染性疾病中,其表达上调有助于清除活性氧,但同时也能激活免疫反应并促进炎性因子的释放^[21]。李青等^[22]研究发现,血清 PRDX1 水平升高与自身免疫性肝病患者肝功能、疾病活动性密切相关,且对自身免疫性肝病患者具有一定临床评估价值。Zhang等^[8]研究发现,急性肝损伤患者血清 PRDX1 水平升高,其升高是影响肝损伤发生的危险因素,可能是机体应对氧化应激的代偿反应,但在炎性反应持续激活状态下反而可能加剧组织损害,形成"抗氧化-促炎"协同失衡机制,提示其在脓毒症肝损伤中发挥重要作用。

从三者的生物学特性来看,S100A9代表了炎性反应的快速放大机制,TRAF6涉及免疫信号调控和细胞因子应答,而PRDX1则体现氧化应激的应激一损伤双相效应,三者在作用机制上既相互独立又可能协同放大肝脏损伤信号,因此联合检测所显示出的高AUC值具有合理的生物学基础,这种整合炎性反应、免疫与氧化应激信号的联合预测方式,有望为临床提供更全面的评估工具,早期识别高风险患儿,指导精准干预^[23-24]。此外,本研究中肝损伤组患儿APACHEIF评分、SOFA评分、AST与ALT水平升高,提示肝功能异常可能不仅是脓毒症的并发症,也是系统性病情进展的标志,进一步强调了其在早期评估脓毒症病情进展中的临床价值,联合评分与生物标志物检测,或可形成更精确的风险分层模型。

4 结 论

综上所述,APACHE Ⅱ评分及 AST、ALT、S100A9、TRAF6、PRDX1 水平均高是影响脓毒症患儿继发肝损伤的危险因素,联合检测血清 S100A9、TRAF6、PRDX1 水平对脓毒症患儿继发肝损伤的预测价值更高。但本研究因样本量有限,又是单中心研究,因此存在一定局限,未来会进一步扩大样本量并结合多中心研究,以提升研究结果的准确性与推广性。

利益冲突: 所有作者声明无利益冲突

作者贡献声明

杨峰霞:设计研究方案,实施研究过程,论文撰写,论文修改;廖凯丽:提出研究思路,分析试验数据,论文审核;吴思菲:实施研究过程,资料搜集整理;房春晓:进行统计学分析

参考文献

- [1] Saini K, Bolia R, Bhat NK. Incidence, predictors and outcome of sepsis-associated liver injury in children: A prospective observational study [J]. Eur J Pediatr, 2022, 181 (4): 1699–1707. DOI: 10. 1007/s00431-022-04374-2.
- [2] 符艺影, 冯小伟, 林坚, 等. 血清 miR-122a、MIF 和 HMGB1 对儿 童脓毒症并发肝损伤的预测价值 [J]. 中华医院感染学杂志, 2024, 34(9): 1428-1432. DOI: 10.11816/cn.ni.2024-231334.
- [3] Liang H, Song H, Zhang X, et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota [J]. Emerg Microbes Infect, 2022, 11 (1): 815-828. DOI: 10. 1080/22221751. 2022.2045876.
- [4] 潘玉. 中性粒细胞与淋巴细胞比值对脓毒症患儿急性肝损伤的预测价值[J]. 中外医药研究, 2024, 3(28): 158-160. DOI: 10. 3969/j.issn.2096-6229.2024.28.052.
- [5] 张春林. 患儿脓毒症继发肝损伤的危险因素及血清高尔基体跨膜糖蛋白 73、微小 RNA-122a 水平变化 [J]. 中国临床医生杂志, 2020, 48 (2): 236-238. DOI: 10. 3969/j. issn. 2095-8552. 2020. 02.036.
- [6] Zhang Y, Wu F, Teng F, et al. Deficiency of S100A9 alleviates sepsis-induced acute liver injury through regulating AKT-AMPK-dependent mitochondrial energy metabolism [J]. Int J Mol Sci, 2023, 24(3):2112. DOI: 10.3390/ijms26030935.
- [7] Feng D, Guo R, Liao W, et al. Plantamajoside alleviates acute sepsis-induced organ dysfunction through inhibiting the TRAF6/NF-kB axis [J]. Pharm Biol, 2023, 61 (1): 897-906. DOI: 10.1080/13880209.2023.2215849.
- [8] Zhang Y, Zhang X, Zhang M, et al. Hepatocytes-derived Prdx1 regulates macrophage phenotypes via TLR4 activation in acute liver injury [J]. Int Immunopharmacol, 2024, 127(1):111439. DOI: 10. 1016/j.intimp.2023.111439.
- [9] Kobashi H, Toshimori J, Yamamoto K. Sepsis-associated liver injury: Incidence, classification and the clinical significance [J]. Hepatol Res, 2013, 43(3): 255-266. DOI: 10.1111/j.1872-034X. 2012.01069.x.
- [10] 中华医学会重症医学分会. 中国严重脓毒症/脓毒性休克治疗指南(2014) [J]. 中华内科杂志, 2015, 54(6): 557-581. DOI: 10. 3760/cma, j. issn. 0578-1426. 2015. 06. 021.
- [11] Coccolini F, Catena F, Moore EE, et al. WSES classification and guidelines for liver trauma [J]. World J Emerg Surg, 2016, 11(1): 50. DOI: 10.1186/s13017-016-0105-2.
- [12] Xu X, Yang T, An J, et al. Liver injury in sepsis: Manifestations, mechanisms and emerging therapeutic strategies [J]. Front Immunol, 2025, 16(1):1575554. DOI: 10.3389/fimmu.2025.1575554.
- [13] 刘斐,姚杰,张丽骞,等. 32 例脓毒症相关性肝损伤患者临床特征及其影响因素分析 [J]. 实用肝脏病杂志,2025,28(1):76-79. DOI:10.3969/j.issn.1672-5069.2025.01.020.
- [14] Xia P, Ji X, Yan L, et al. Roles of S100A8, S100A9 and S100A12

- in infection, inflammation and immunity [J]. Immunology, 2024, 171(3): 365–376. DOI: 10.1111/imm.13722.
- [15] 王敬, 杨忠会, 王贤, 等. CAL、S100A8、S100A9 对新生儿败血症早期诊断及病情判断的临床价值[J]. 中国妇幼健康研究, 2024, 35(9):64-70. DOI: 10.3969/j.issn.1673-5293.2024.09.010.
- [16] 彭海琳, 王从贵, 周天珍, 等. 重症肺炎支原体肺炎患儿血清 IL-17A、S100A8、S100A9 表达及在预后判断中的意义 [J]. 国际 检验医学杂志, 2023, 44(24): 3010-3015. DOI: 10.3969/j. issn. 1673-4130.2023.24.013.
- [17] 王敏,周静,马芮,等. 妊娠期高血压疾病孕妇血清 TRAF6、CTRP9 水平与胎儿生长受限的相关性分析 [J]. 疑难病杂志,2025,24(3):323-327. DOI: 10.3969/j. issn. 1671-6450.2025.03.013.
- [18] 赵文琪,张震,夏洪莲,等.右美托咪定对横纹肌溶解致急性肾损 伤肾组织中 MyD88 和 TRAF6 蛋白的影响[J].中国医药科学, 2022,12(23):31-34.DOI:10.3969/j.issn.2095-0616.2022.23.009.
- [19] 唐永军, 张红玉, 吴勤奋. 血清 miR-98-5p、TRAF6 mRNA 表达与 脓毒症并发肺损伤的关系 [J]. 山东医药, 2022, 62(25):11-15. DOI: 10.3969/j.issn.1002-266X.2022.25.003.

- [20] 杨威,黄咏宁,吕元博,等. 重症急性胰腺炎患者外周血 TLR4、TRAF6 的表达及与并发肝损伤的关系 [J]. 中国现代医学杂志, 2023, 33 (12): 18-23. DOI: 10.3969/j. issn. 1005-8982. 2023. 12.004.
- [21] He Y, Peng Y, Tao L, et al. Peroxiredoxin-I aggravates lipopolysac-charide-induced septic shock via promoting inflammation [J]. Biochem Biophys Res Commun, 2020, 527(4): 861-865. DOI: 10. 1016/j.bbrc.2020.04.149.
- [22] 李青, 周路艳, 谭智, 等. 自身免疫性肝病患者血清 PRDX1、PTEN 水平及其与肝功能、疾病活动性的关系 [J]. 国际检验医学杂志, 2024, 45(14): 1682-1686. DOI: 10.3969/j. issn. 1673-4130.2024.14.004.
- [23] 王历,彭适,蔡馨,等.血清 PKM2 与 PCT 联合对脓毒症患者的诊断价值研究 [J].疑难病杂志,2023,22(12):1233-1237.DOI:10.3969/j.issn.1671-6450.2023.12.001.
- [24] 田广,钱少兵,沙艳萍,等.白介素-6、降钙素原和血清淀粉样蛋白 A 联合检测在脓毒症患者中的应用价值 [J].河北医药,2024,46 (2):250-253.DOI:10.3969/j.issn.1002-7386.2024.02.020.

(收稿日期: 2025-06-24)

作者•编者•读者

撰写医学论文主体部分的要求

- 1 前言 概述研究的背景、目的、研究思路、理论依据、研究方法、预期结果和意义等。仅需提供与研究主题紧密相关的参考文献,切忌写成文献综述。一般以200~300个汉字为宜,占全文字数的5%左右。
- 2 资(材)料与方法 实验研究论文常写成"材料与方法",临床研究论文常写成"资料与方法"。
- 2.1 研究对象:研究对象为人,需注明时间、地点、分组方法、一般情况、选择标准与排除标准等,并说明经所在单位伦理委员会批准,研究对象知情同意。研究对象为实验动物,需注明动物的名称、种系、雌雄、年龄、饲养条件、健康状况及合格证号等。
- 2.2 药品、试剂及仪器、设备:药品及化学试剂使用通用名称,并注明剂量、单位、纯度、批号、生产单位及给药途径。仪器、设备应注明名称、型号、规格、生产单位、精密度或误差范围,无须描述工作原理。
- 2.3 观察指标与方法:选用相应观察指标,详述新创的方法及改良方法的改进之处,以备他人重复。采用他人方法,以引用参考文献的方式给出即可。
- 2.4 统计学方法 说明所使用的统计学软件及版本,明确资料的表达及统计学方法的选择。用 \bar{x} ±s 表达服从或近似服从正态分布的计量资料,可采用t 检验、方差分析;用 $M(Q_1,Q_3)$ 表达呈偏态分布的计量资料或生存时间资料,可采用秩和检验,若考虑协变量的影响,可采用协方差分析;用频数或构成比(%)表达计数资料或等级资料,可采用卡方检验或秩和检验。
- 3 结果 是指与设计的观察指标相对应的实(试)验所得数据、观察记录,经过综合分析和统计学处理的结果,而不是原始数据,更不是原始记录。按逻辑顺序在正文的文字、表格和图中描述所获得的结果。结果的叙述应实事求是,简洁明了,数据准确,层次清楚,逻辑严谨。以数据反映结果时,应注意不能只描述导数(如百分数),还应同时给出据以计算导数的绝对数。一般应对所得数据进行统计学处理,并给出具体的统计检验值,如: t=2.85, P<0.01。
- 4 讨论 是对研究结果的科学解释与评价,是研究所形成的科学理论,不必重述结果部分具体数据或资料。着重讨论研究结果的创新之处及从中导出的结论,包括理论意义、实际应用价值、局限性,及其对进一步研究的启示。应将本研究结果与其他有关的研究相比较,并将本研究结论与目的联系起来讨论,同时列出相关参考文献。
- 5 结论 是对研究结果和论点的提炼与概括,如果推导不出结论,可在讨论中写一结束语。